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LElTER TO THE EDITOR 

Non-perturbative uniform wavefunctions of coupled radial 
Schrodinger equations 

Pascal BraultiS, Olivier VallCeS and Nguyet Tran Minhi 
t Observatoire de Paris-Meudon, Dipartement Atomes et MolCcules en Astrophysique, 
92195 Meudon Principal Cedex, France 
$ GREMI, UFR Sciences, Universiti d’Orleans, BP6759, 45067 Orleans Cedex, France 

Received 12 October 1987 

Abstract. A uniform approximation is used with the Green function method to find the 
total wavefunctions of scattering coupled equations. A simple and analytical expression 
of non-diagonal terms of the R matrix is derived. 

Using the well known uniform approximation (Berry and Mount 1972, Child 1974, 
Eu 1984), we develop in two steps a method to find uniform solutions of coupled 
scattering equations. The intent is to provide accurate uniform wavefunctions in a 
non-perturbative way. Such solutions are obtained in the case of a single equation 
and the distorted wave coupled equations lead to an interesting analytical expression 
of the non-diagonal R-matrix elements. These results are used to solve a two-state 
scattering set of coupled equations without perturbation approximations. Finally we 
give some areas of applications. 

The uniform solution of the homogeneous Schrodinger equation is now well 
established (Berry and Mount 1972, Eu 1984, Brault 1987): 

with 

+ ( r )  = h-2/3(~(r)/p2(r))”4{(yAi(h-2’3~(r))+PBi(h-2/3~(r))} ( 2 a )  

where 

x ( r )  = -(: l : p ( r ’ )  dr’)2’3 

x( r )  = (i p ( r’)  d r ’) 2’3 

r Z  r, 

r S r o .  

Ai(x) and Bi(x) are the two linearly independent Airy functions and r, is the single 
turning point. In this case for x > O ,  the $ ( r )  must exponentially decrease and thus 
p must equal zero, while a will be given by normalisation conditions. 

Note this approximate wavefunction is a solution to the comparison equation (Berry 
and Mount 1972): 
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and was successfully used in inelastic and reactive scattering (see Brault et a1 1987 
and references therein). Usually the comparison equation does not invoke h explicitly; 
it is used here to preserve this dependence. 

Consider now the inhomogeneous radial Schrodinger equation 

which can be seen as a line of a set of coupled scattering equations. 
If we perform the changes of variable and function: 

x = x ( r )  

$ = z(x)(dx/dr)-"2 

equation (3) becomes 

where {x, r }  = X ' ' ' / X ' - ~ ( X " / X ' ) ~  is the Schwartzian derivative. In the semiclassical limit, 
where h -+ 0, we shall neglect this term. The solutions (2a)  are found using the same 
procedure applied to equation ( 1 ) .  

The uniform approximation is obtained when p2(r)(dx/dr)-2 = -x which leads to 
213 

x = ( 3  1,; p(  r ' )  dr') 

so that the turning point ro leads to x = 0. Therefore (3) takes the form: 

To find the particular solution of (4) we write the right-hand side as 

F ( x )  = F ( 0 )  + F ( x )  - F(0) .  

We now look for the particular solutions of the following two equations: 

1 1 
h h 

z:-yxz1 = - 7 ( F ( x ) - F ( O ) )  

1 
h ( 5 6 )  Z; - T X Z ~  = - F (  0)/ h '. 

When h + 0, an approximate solution to ( 5 a )  is given by (Nayfeh 1973) 

( 6 )  '1 = ( F ( x )  - F(O))/x. 

The solution of (56) may be obtained in terms of the solution of the inhomogeneous 
Airy equation (Lee 1980): 

y"-xy= - 6 ' J y = G i ( x )  ( 7 )  

( 8 )  y"-xy = + r - ' j y  = Hi(x). 

In his book Nayfeh (1973) used the Hi(x) function. For our scattering point of view 
we choose Gi(x) which has good asymptotic behaviour for large internuclear separation 
(Abramowitz and Stegun 1965). 
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We can now write the uniform semiclassical solution of (3) as the sum of the 
expressions (6) and (71, then 

where 

Finally, as h + O ,  the first term of (9) is the dominant one, which gives the uniform 
solution: 

One can apply this result to the resolution of coupled equations involved in collision 
theory. Consider the distorted wave coupled radial equations (Child 1974): 

( 1 l b )  - + 2 ( r ) + j p 2 ( r )  d2 P: = W(r)+1(r). 
dr2  

Using (2a)  and (2b), an approximate solution of (110) is: 

Thus with the help of ( l o ) ,  ~ + h ~ ( r )  becomes 

where the labels 1 , 2  refer to the channels 1 and 2. r2 is the turning point in the channel 
2. If we recall the definition of the reactance R matrix (Child 1974), with the asymptotic 
behaviour of Gi(x), i.e. 

The non-diagonal R-matrix element is readily obtained as 
- 

which can provide the S- or T-matrix elements. It could be interesting to compare 
this result with the Green function method used by Burnett and Belsley (1983). Indeed 
the Green function solution of 

(12a 

is found to be in the semiclassical limit: 

G(r, r ‘ )  = -,K4l3 ( - x(r )  ) I/4( - x( ”) ) ”4{ Ai( h - 2 ’ 3 x ( r ) ) B i ( h - 2 / 3 ~ ( r ‘ ) )  r >  r’ 

p 2 (  r) p 2 (  r’) Ai( h -2/3x( r’))Bi( A -2/3x( r ) )  r < r‘. 
(126 
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Therefore the semiclassical solution of ( 3 )  is given by: 

For comparison we can look at the asymptotic behaviour of expressions (10) and (12). 
From (13 )  we have: 

but Bi(z) has the same asymptotic behaviour as Gi(z) (Abramowitz and Stegun 1965) 
and therefore (10) and (13) behave similarly at infinity. For clarity we propose now 
to solve a two-state scattering problem which can be represented by the following two 
coupled radial equations: 

1 
m ) + p ; ( r ) w  = W(r,  d/dr)+2(r) (14a) 

I 
+ W + p 3 r ) + 2 ( r )  = W r ,  d/dr)+1(r) (146) 

G 1 ( r )  = + ~ r ) +  Jaw ~ ( c  r’ )  ~ 4 + 2 ( r ’ )  dr’ 

where p , ( r )  are the local momenta, W ( r ,  d/dr )  is the coupling term (either radial or 
electronic) and the +,( r )  are the radial wavefunctions. 

The solutions can be written in terms of the Green functions GI(  r, r ’ )  and G2( r, r ’ ) :  

+ 2 ( r )  = +m+ lu’ G2(G r’) W(r’)+l(r’) dr’ 

$P(r) being the solutions of the uncoupled equations which can be expressed as the 
wavefunctions (20) .  If we insert the second equation into the first one, we find 

h ( r )  = ccl%r)+ 1 G I ( ~ ,  r ’ )  W(r’)+S?L(r’) dr’ 
cr 

+lox JOE Gl(r, r’)G2(r’,  r”)  W ( r ’ )  W ( r ” ) + , ( r ’ )  dr’dr“  

and IL2(r) is obtained by exchanging the labels 1 and 2. Then the set (14a, b )  is 
equivalent to the two uncoupled equations: 

+ l ( r )  = cpl(r)+ lox @ d r ,  r”)  W ( r ” ) + , ( r ” )  dr” (15a) 

with 
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p2( r )  and Q 2 , (  r, r”) are obtained putting 1 in place of 2 and conversely. Note that the 
approximate solution $,( r )  = pi( r) is the distorted wave one. 

We recall that the Green function G(r,  r’) is a solution of the equation 

d2G(r,  r’) 1 6 (  r - r‘) 
+--;p2(r)G(r, r’)=- 

d r2  h-  h 

and the inhomogenous solution of 

1 H ( r )  F ” ( r ) + T p 2 ( r ) F ( r )  =- 
h h 2  

is, after expression ( lo) ,  

and in terms of the Green function: 

F ( r ) =  G(r ,  r ’ )H(r’)  dr’. I,‘ 
Then the kernel 

(D12(r, r”) = loK G2(r’, r”)(Gl(r ,  r’) W(r‘)) d r ’  

is a solution of the equation: 

( - g + p 2 ( r ” ) ) ( D I 2 ( r ,  d2 1 r ” )=  Gl(r,  r”) W(r”) 

for which the semiclassical solution, using the identity between (16a) and (16b), is 

x2(rt’) ,h -213 

Q 1 2 (  r, r”) = ~ Gl( r ,  r z )  W(r2)(-) Gi(h-*”x,(r”)) Y2( r2 1 P:(r”) 

where ri is the turning point for each channel; then the integral term in (15a) takes 
the form: 

JorQl2(r, r”) W(r”)$,(r”) d r”  

,h-2/3 -c x2(r”) 
-- - W( rz) GI ( r, r2) lo (-) W (  r”)Gi( h -‘”x2( r”)) $I ( r”) d r”. 

aY2(r2) P W )  
(17 )  

On the other hand, following (16~1, b) ,  the term 5,“ G,(r, r’) W(r’)$:(r’) dr’  is given by 
its semiclassical form: 

Thus we can express the solution $l(r)  as the integral equation: 

G1(r) = p r ( r ) +  Gl(r ,  r ~ )  F(r”)+,(r”)  dr“  
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with 

, f i -2 /3  x 2 ( r “ )  
P z ( r  ) 

W (  r 2 )  (7) W (  r”)Gi( K 2 l 3 x 2 (  r ” ) ) .  F (  r’7 = 

Let 

A = lom F ( r ” ) + , ( r ” )  dr” 

then 

9 i ( r ) =  Pi(r)+AG1(r9 rz) 

and, putting this quantity in (19), we find: 

A = ( lom F ( r ” ) q , ( r ” )  dr”)( 1 - lom F ( r ” ) G , ( r ” ,  r z )  dr” . ) -‘ 
The integral 

lor F (  r”)  G, ( r”, r2)  d r” 

can be evaluated in the same way as before to give: 

lox GI( r”, r 2 ) F (  r” )  dr“ 

The integral 

lox F (  r”)cp,( r ” )  dr” 

could be calculated either by a numerical quadrature or by a stationary phase method. 
Then using results (19) and (20) we find the semiclassical wavefunction 

Gl(r, r 2 )  is given by the appropriate expression (126) stated by Burnett and Belsley 
(1983). The values for which the denominator becomes zero correspond to the bound 
states of the system. 

The wavefunctions given by formulae (10) and (22) are the main results we propose 
in this paper. The first one was used to infer a simple analytical R-matrix element in 
the distorted wave approximation frame. 

The knowledge of complete inelastic scattering uniform wavefunctions (22) is of 
great interest in laser-assisted collision phenomena. They are in particular very useful 
for calculating the Franck-Condon factors which take the form I(+llDl+2)(z where D 
is the electric dipolar operator. With such uniform wavefunctions, the collision is 
treated accurately even in the collisional interaction region. In a forthcoming paper 
we intend to apply these results to reactive scattering. 
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